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Abstract

In this work, we present a seamless, energy-conserving method to couple atomistic
and continuum representations of a temperature field in a material. This technique
allows a molecular dynamics simulation to be used in localized regions of the compu-
tational domain, surrounded and overlaid by a continuum finite element representa-
tion. Thermal energy can pass between the two regions in either direction, making
larger simulations of nanoscale thermal processes possible. We discuss theoretical
developments and numerical implementation details. In addition, we present and
analyze a set of representative simulations.

Key words: atomistic-to-continuum coupling, heat transfer, finite elements,
multi-scale simulations

1 Introduction

As technological advances allow the engineering of devices at ever decreasing
length scales, and as ever increasing fidelity is demanded in the computational
simulation of these devices, it has become clear that traditional material mod-
els based on continuum descriptions of solids can be inadequate at the micro-
and nano-scales. Surface effects, grain boundaries, defects, and other devia-
tions from a perfect continuum can have a large effect on material behavior
at these scales, and simulation techniques based on descriptions at the atom
scale, such as molecular dynamics (MD), have become an important part of
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the computational toolbox. However, molecular dynamics simulations on even
the largest supercomputers are currently limited to systems on the order of
a billion atoms [1], large enough for the study of some nano-scale phenom-
ena but still far too small to resolve the micro-to-macroscale interactions that
must be captured in the simulation of any real device. The recognition of this
limitation on MD has led to the development of several methods for the cou-
pling of atomistic and continuum material descriptions in a single simulation;
see [2,3] for reviews of these methods. The goal of these methods is to allow
the use of a continuum-based technique such as finite elements (FE) in parts
of the domain where such a description is valid, while using MD near defects
or in other regions in which the continuum description breaks down.

To date, most of these atomistic-to-continuum coupling methods have been
based on the coupling of the momentum equation (or in the case of quasi-
static problems, the equilibrium equation) in the continuum to the equations
of motion for the atoms, usually by combining the Hamiltonians of the two
systems [4] or by ensuring that internal forces are properly balanced [5]. Most
often, these methods assume that the temperature of the continuum region is
in effect zero, and quite a bit of attention has been paid to reducing unwanted
internal reflections of waves in the MD lattice at the MD-continuum interface.
However, a much more typical scenario for real devices is a temperature that
is far above absolute zero. In this case, it is more accurate to recognize lattice
waves as energy-carrying phonons, and to think of the surrounding continuum
as a thermal bath that maintains the correct balance of incoming and outgoing
phonons at the interface at the local temperature.

Some attempts have been made previously to accurately account for the effects
of non-zero temperature. Dupuy et al. [6] have developed a finite-temperature
version of the Quasicontinuum Method that uses a local-harmonic approxima-
tion, at a constant temperature, to account for thermal fluctuations of atoms.
Rudd and Broughton [7] have developed the coarse-grained molecular dynam-
ics (CGMD) technique for simulations of anharmonic solids at finite temper-
atures. The bridging scale decomposition method of Wagner and Liu [8] has
been extended to finite temperatures by Park et al. [9]. However, to our knowl-
edge, no technique exists to couple the thermal fluctuations in the MD region
with an energy equation in the continuum to effect true two-way temperature
coupling between the MD and continuum regions. In this work, we present a
technique for such a coupling, allowing the simulation of nonequilibrium heat
transfer between MD and continuum regions of a domain.

Two-way temperature coupling implies that thermal information can pass out
of the MD region into the continuum, and that the temperature of the con-
tinuum affects the thermal fluctuations of the MD region. The first direction
of information flow, from MD to continuum, is important in applications in
which phenomena at the atom scale lead to what would be measured in the
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laboratory as changes in macroscale temperature. Examples of such phenom-
ena include friction [10], laser heating [11], fracture [12], and plastic failure
[13], all of which have been studied using MD or even coupled MD-continuum
simulations but without a complete treatment of macroscale temperature in-
teractions. By coupling a continuum energy equation to the atom dynamics,
we can simulate temperature changes in the continuum, possibly over large
distances, that are caused by these atom-scale phenomena.

At the same time, in a coupled simulation any temperature field that is im-
posed on the continuum should have an effect on the thermal fluctuations of
atoms in the MD region. For example, a macroscale temperature gradient on
the continuum should lead to a heat flux through an MD region embedded
within it. It is important to capture this behavior correctly in a simulation
method, because it is known that structures at the atomic scale such as inclu-
sions or grain boundaries can have a large effect on the thermal conductivity of
the material [14]. The ability to do two-way temperature coupling allows the
nanostructure of the MD region to have the proper effect on the continuum
temperature field.

Several previous authors have coupled MD simulations to a continuum energy
equation. Ivanov et al. [11] have used a two-temperature model to incorporate
the effects of the electron temperature on the dynamics of the atomic nuclei
in simulations of laser heating of metal films. Schall et al. [15] employed a
thermostat acting on the atoms in an MD simulation to enforce the correct
thermal conductivity in simulations of metals; this conductivity is otherwise
underpredicted by classical MD. Padgett and Brenner [16] used a similar tech-
nique to capture the effects of Joule heating in metal nanowires. The principal
innovation of the current work is the ability to couple an MD simulation to
the temperature field of a continuum that overlaps and surrounds it, such that
the two-way coupling of energy between two different domains is effected.

In this work we will use finite elements to solve the heat equation in the con-
tinuum. We begin in Section 2 by defining the basic problem to be solved
and stating the assumptions used. In Sections 3 and 4, respectively, we derive
the forms of the energy equations to be solved in the MD and FE domains;
the coupling between the domains follows naturally from our derivation. Time
filtering is introduced in Section 5 to reduce fluctuations in the temperature
field, and in Section 6 we present some of the details of the numerical imple-
mentation of the method. Example problems are presented in Section 7, and
we conclude with a discussion in Section 8.
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2 Problem Definition

Consider the problem geometry shown in Figure 1. A domain Ω is discretized
with a finite element mesh; the outer boundary of the domain is denoted
Γ with outward normal vector n. At the same time, an internal portion of
the domain Ωmd is filled by a set of atoms A. The remaining portion of the
domain in which there are no atoms but only finite elements is denoted Ωfem,
so that Ωmd ∪Ωfem = Ω and Ωmd ∩Ωfem = ∅. The boundary between the two
subdomains is given by Γmd, with normal vector nmd oriented into the MD
region. Note that the entire domain, including Ωmd, is discretized with finite
elements, so that the atomistic and finite element descriptions co-exist in Ωmd.
In the following, the vector X represents the reference coordinates of a given
point in Ω.

We are concerned with heat transfer problems in which we can assume that
the Fourier heat law holds in Ωfem, where we will rely on a Galerkin finite
element solution. The temperature field T (X, t) evolves according to:

ρcpṪ (X, t) = ∇ · κ∇T (X, t) in Ωfem (1)

where ρ, cp and κ are the density, specific heat, and thermal conductivity
of the material (which we assume to be isotropic). Boundary conditions are
specified on Γ, and for generality we assume that Γ can be partitioned into
a boundary ΓT on which temperature is prescribed, and a boundary Γq on
which heat flux is prescribed:

T (X, t) = T̄ (X, t) on ΓT (2a)

−n · κ∇T (X, t) = q̄n(X, t) on Γq (2b)

Initial conditions will be discussed in a later section, because they must be
defined and applied after we have completely described our coupled system.

In Ωmd, we assume that the heat flow and the corresponding dynamics are
too complex, in general, to be described by the Fourier heat law. It is in
this region, presumably, that we will capture atomic-level effects on the heat
transfer; these may include effects of grain boundaries, inclusions, vacancies,
dislocations, free surfaces, or any other nanoscale structures that either make
a continuum description inappropriate or have a large enough effect on heat
transfer as to prevent a priori computation of thermal parameters such as
conductivity. Region Ωmd will be treated using classical molecular dynamics,
with atomic forces derived from an interatomic potential. Note that we are
considering only phonon heat transport in this region, and that our molecular
dynamics cannot represent the electron-mediated heat transfer that dominates
in a metal.
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For a given atom α, the equations of motion are given in terms of the atomic
position xα and velocity vα:

ẋα = vα (3a)

mαv̇α = fmd
α ≡ −∂Umd

∂xα

(xα,xβ, ...) (3b)

where mα is the mass of atom α, and Umd(xα,xβ, ...) is the interatomic po-
tential energy, which is a function of the positions of all atoms. In Section 3,
we will discuss implementation details for these molecular dynamics equations
and show how they must be augmented to account for heat transfer from the
surrounding continuum region.

In our analysis we will make use of integrals over the domain Ω, which require
special treatment in Ωmd. We define g(X) to be an integrable function over Ω
that takes on values at the atom positions Xα. Hence∫

Ω
g(X)dV =

∫
Ωmd

g(X)dV +
∫
Ωfem

g(X)dV (4)

The particular choice made for the evaluation of g(·) over Ωmd lies at the heart
of the coupling method because through this means atomistic information is
upscaled to the continuum. We define∫

Ωmd

g(X)dV ≡
∑
α∈A

gα∆Vα (5)

where ∆Vα is the volume associated with atom α. In the case where g(X)
corresponds to a continuous function or field, gα = g(Xα) and Eqn. (5) is a
convenient quadrature; but, where gα is a quantity, such as atomic velocity,
defined only at atoms, Eqn. (5) is a means of homogenization.

3 The Atomistic Temperature Field

3.1 Nodes-to-atoms reduction operation

For a system of atoms at equilibrium, the system temperature T can be written
[17]:

3

2
nakBT =

〈∑
α∈A

1

2
mα|vα|2

〉
(6)

where kB is Boltzmann’s constant and the angle brackets represent an ensem-
ble or time average. Our primary interest in this work is in non-equilibrium
systems, so that (6) does not necessarily apply; however, given this expression
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it is convenient to define a field Tα at the atoms which, when averaged, gives
the correct temperature if the system is at equilibrium (and with zero mean
velocity):

Tα ≡
1

3kB

mα|vα|2 (7)

It should be noted that there are lower limits to the applicability of Eqn.
(6) in terms of number of atoms and the time interval to average over and
that other definitions of a local, nonequilibrium temperature exist, see, e.g.,
[18–21]. However, the existence of an optimum non-equilibrium temperature
measure is still a matter of debate and research, see [22].

The development of a coupled atomistic-to-continuum method requires a re-
lationship between this atomistic temperature field and a continuum field
defined on the finite element nodes. We begin by defining an interpolated
temperature field T h(X, t):

T h(X, t) ≡
∑
I∈N

NI(X)θI(t) (8)

In this expression, N is the set of all nodes in the domain, θI is a temper-
ature degree of freedom defined on node I, and NI(X) is the interpolant
associated with node I evaluated at X. Note that because X represents the
time-independent reference coordinate of a point, all of the time dependence
of of T h is through the degrees of freedom θI . We will use linear finite element
shape functions as our interpolants in this paper, but many other choices are
possible. The superscript on T h reflects the fact that the interpolation can be
parameterized in terms of some characteristic mesh size h.

Suppose that we are given a set of atomic temperatures defined as in Eqn.
(7), along with a set of nodal temperatures θI . To relate the two temperature
definitions to each other, we can minimize the squared difference between
T h(X) and some temperature field T (X). That is, we minimize∫

Ω

(
T (X)− T h(X)

)2
dV (9)

where integration over the molecular dynamics region of the domain is com-
puted as in (5). Taking the variation with respect to Th and setting it to zero
gives: ∫

Ω
δT hT hdV =

∫
Ω

δT hTdV (10)

Now assume that T is a field equal to T h in Ωfem and Tα at the atom positions
in Ωmd. Explicit use of (5) then gives:∫

Ω
δT hT hdV =

∑
α∈A

δT h(Xα)Tα∆Vα +
∫
Ωfem

δT hT hdV (11)
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The integral over Ωfem can be subtracted from both sides. Given Eqn. (8) and
that the variation δT h is arbitrary, we can derive an equation true for all I:∑

J∈M

(∑
α∈A

NIαNJα∆Vα

)
θJ =

∑
α∈A

NIα∆VαTα (12)

NIα ≡ NI(Xα)

Here, M is the set of all nodes J for which NJ(Xα) 6= 0 for some atom α; i.e.
the set of nodes whose shape function supports intersect Ωmd.

Eqn. (12) gives a matrix equation for the nodal temperatures θJ , J ∈ M. In
fact, this is a projection of the atom temperature field into the space of finite
element shape functions; we note the similarity between this expression and
the projection operation defined in [8] for atom displacements and velocities.
In our current work, we find it is unnecessary to compute this projection
as defined here; instead, we approximate it using a row-sum lumping of the
matrix on the left hand side, leading to:

θI =
∑
α∈A

N̂IαTα (13)

N̂Iα ≡
NIα∆Vα∑

β∈ANIβ∆Vβ

Specifically, row-sum lumping is a common procedure for approximating a
matrix with a diagonal matrix that consists of replacing each row of the matrix
with its sum at the diagonal entry, see, e.g., [23, Appendix 8]. Eqn. (13)
defines an atoms-to-nodes reduction operation rather than a true projection
operation, where the coefficients N̂Iα are scaled finite element shape functions.

3.2 Augmented molecular dynamics force

In order to include the effects of the continuum region on the temperature
in ΩMD, we augment the force on each atom by a term that is proportional
to the velocity of that atom. This form of control is shared by many popular
MD thermostat techniques, including the Nose-Hoover [24] and Berendsen [25]
thermostats. A similar approach to controlling the energy of an MD simulation
has been used by other authors to apply a known heat flux to atoms [26] and
to account for coupling between electron and phonon energies in metals [11].

A drag force fλ
α is defined and added to the standard molecular dynamics force

(cf. Eqn. 3b):
mαv̇α = fmd

α + fλ (14)

where
fλ = −mα

2
λαvα. (15)
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The coefficient mα/2 is an arbitrary multiplier that will simplify later results.
The parameter λα may be different for every atom. Since this parameter is
used to model interaction with the continuum, a natural choice is to let this
function be interpolated from a set of nodal values λI defined on the set of
nodes M:

λα(t) =
∑

I∈M
NIαλI(t) (16)

The coefficients λI can be chosen to enforce conservation of total energy, as
derived in the next section.

3.3 Total energy conservation

The total energy of the combined MD-continuum system can be decomposed
between the two regions:

Etot = Emd + Efem (17)

The energy of the molecular dynamics region is the sum of the potential and
kinetic energies of the atoms:

Emd = Umd +
1

2

∑
α

mα|vα|2 (18)

while the energy of the finite element region is given by the thermal energy
ρcpT

h integrated over Ωfem:

Efem =
∫
Ωfem

ρcpT
h(X, t)dV. (19)

We will choose the nodal values λI such that total energy is conserved through-
out the simulation, i.e. Ėtot = 0 if no energy is added to the system at the
external boundary. The rate of change of the MD energy is

Ėmd = U̇md +
∑
α∈A

mα(vα · v̇α)

=
∑
α∈A

∂Umd

∂xα

· ẋα +
∑
α∈A

vα · (fmd
α + fλ

α)

=
∑
α∈A

vα · fλ
α (20)

where we have used Eqns. (3b) for the definition of fmd
α and (14) for the

substitution of v̇α.

To compute the rate of change on the finite element system, we use Eqn. (1)
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with the boundary condition q̄n = 0 on Γq = Γ. Then:

Ėfem =
∫
Ωfem

ρcpṪ
hdV

=
∫
Ωfem

∇ · κ∇T hdV

=
∫
Γmd

nmd · κ∇T hdA (21)

The total energy balance is then:

∑
α∈A

vα · fλ
α = −

∫
Γmd

nmd · κ∇T hdA (22)

Physically, this energy balance suggests that the total work done on the MD
system by the additional force fλ

α is equal to the total energy flux out of the
FE and into the MD region.

We will choose the nodal values λI to satisfy (22); however, the solution to
this single scalar equation for the nM nodes in M is clearly non-unique. In
order to solve for a set of nodal values, we will “localize” the energy balance by
multiplying the summand and integrand by the nodal shape function NI(X):

∑
α∈A

NIαvα · fλ
α = −

∫
Γmd

NInmd · κ∇T hdA (23)

Note that a solution to (23) also satisfies (22) because of the partition of unity
property of the finite element shape functions (

∑
I NI(X) = 1), as can be seen

by summing (23) over I. Although this choice for the localized energy balance
is not unique, it will be shown that this form leads to simplifications in the
derivation of finite element heat equation.

Substituting Eqns. (15) and (16) into (23), and making use of the definition
of atomic temperature (7), gives, after some rearrangement:

∑
J∈M

(∑
α∈A

NIαTαNJα

)
λJ =

2

3kB

∫
Γmd

NInmd · κ∇T hdA (24)

This system of nM equations can be solved for λI . The numerical computation
of the surface integral on the right-hand side of (24) will be discussed in Section
6.2.
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4 The Finite Element Heat Equations

In the previous section we related the kinetic energies of the atoms in the MD
region to nodal temperatures θI . However, in our two-way coupled system the
nodal temperatures are also affected by the thermodynamics of the continuum
FE region, and we must derive a heat equation valid over the entire domain.
We begin with Eqn (11), from which the reduction operation was derived.
Taking the time derivative (note that δT h is not a function of time) and using
the Fourier heat equation (1) in Ωfem gives∫

Ω
δT hṪ hdV =

∑
α∈A

δT h(Xα)Ṫα∆Vα +
∫
Ωfem

δT h∇ · κ

ρcp

∇T hdV (25)

This leads to a matrix equation for the nodal temperatures:

∑
J∈N

(∫
Ω

NINJdV
)
θ̇J

=
2

3kB

∑
α∈A

NIα∆Vαvα ·
(
fmd
α + fλ

α

)
−
∑
J∈N

(∫
Ωfem

∇NI ·
κ

ρcp

∇NJdV
)
θJ

−
∫
Γq

NI
q̄n

ρcp

dA +
∑
J∈N

(∫
Γmd

NInmd ·
κ

ρcp

∇NJdA
)
θJ (26)

In deriving this equation, we have made use of the atom temperature def-
inition (7); the modified atomic equation of motion (14); the flux boundary
condition (2b); the fact that the variation δT h is zero on ΓT ; the finite element
interpolation for T h and δT h (8); and the arbitrariness of the nodal variations
δθI (except on ΓT ).

A further simplification is possible if we make two assumptions: (1) that the
atomic volume ∆Vα is uniform over all atoms, and (2) that the specific heat
capacity of the system takes the value given by the Dulong-Petit law for a
classical solid [17]:

cp =
3kB

ρ∆Vα

(27)

This expression is a consequence of the equipartition theorem for a harmonic
solid. Using the localized energy balance from Eqn. (23), the boundary integral
over Γmd can be related to the drag force on the atoms:

∑
J∈N

(∫
Γmd

NInmd ·
κ

ρcp

∇NJdA
)
θJ = − 1

3kB

∑
α∈A

NIα∆Vαvα · fλ
α (28)
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Using this result in Eqn. (26) gives:

∑
J∈N

(∫
Ω

NINJdV
)
θ̇J

=
2

3kB

∑
α∈A

NIα∆Vαvα ·
(
fmd
α +

1

2
fλ
α

)
−
∑
J∈N

(∫
Ωfem

∇NI ·
κ

ρcp

∇NJdV
)
θJ −

∫
Γq

NI
q̄n

ρcp

dA (29)

It may seem surprising that the boundary integral over Γmd does not com-
pletely cancel the fλ

α term on the atoms. Since the boundary integral repre-
sents heat flow into the FE-only region while the fλ

α term represents the work
done on the MD system, it might be expected that these quantities are equal
and opposite. The reason for the discrepancy is that in the combined sys-
tem heat equation (29), the temperature represents the total internal energy
(kinetic plus potential) of the continuum, while in the MD system the temper-
ature represents only the kinetic energy. The Dulong-Petit law (27) assumes
equipartition between kinetic and potential energy modes, so that only half of
the energy leaving the FE-only region goes into the kinetic energy of the MD
system.

Because the boundary Γmd may cut through the interiors of elements, the
integral over Ωfem in (29) is difficult to compute numerically in the form given
if standard Gaussian integration over the elements is to be used. To allow the
computation of this integral, we can use expression (5) to get∫

Ωfem

∇NI ·
κ

ρcp

∇NJdV

=
∫
Ω

∇NI ·
κ

ρcp

∇NJdV −
∑
α∈A

(
∇NI ·

κ

ρcp

∇NJ

)∣∣∣∣∣
α

∆Vα (30)

The integral over Ω can be computed numerically over the elements using
standard Gaussian quadrature. In effect, we use the atoms as a set of quadra-
ture points on which to evaluate the integral on Ωmd. Note that this is not the
same as assuming that the Fourier law is valid in this region; we are simply
evaluating the integrand at the atom positions.

With this approximation the final form of the differential equation for the
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nodal temperatures is

∑
J∈N

(∫
Ω

NINJdV
)
θ̇J

=
∑
α∈A

 2

3kB

NIαvα ·
(
fmd
α +

1

2
fλ
α

)
+
∑
J∈N

(
∇NI ·

κ

ρcp

∇NJ

)∣∣∣∣∣
α

θJ

∆Vα

−
∑
J∈N

(∫
Ω

∇NI ·
κ

ρcp

∇NJdV
)
θJ −

∫
Γq

NI
q̄n

ρcp

dA (31)

Eqn. (31) together with the modified momentum equation for the atoms (14)
and expressions for the drag force (15) and nodal drag coefficients λI (24)
define our coupled solution scheme. The atom motions affect the finite element
solution through the first term on the right-hand side in (31); the finite element
solution feeds back into the atomic system through the drag force. Thermal
information can therefore flow in both directions.

5 Time-Filtered Coupling

Simulations using (14) and (31) as written lead to time fluctuations in the
nodal temperature field in Ωmd. Because they are incompatible with the usual
behavior of a continuum that obeys the Fourier heat law, these fluctuations
are undesirable if we are trying to couple to a smoothly varying tempera-
ture field in the surrounding continuum, or if we want to compare to experi-
mentally measured temperatures. Fluctuations can be reduced by using large
elements that effectively average the atomic contributions Tα to the temper-
ature over a large number of atoms. To reduce the fluctuations even further,
especially when geometry or other considerations, such as resolving spatial
inhomogeneities, prevent use of very large elements, we can average in time.
Since this time average is to be computed “on the fly” and used in the coupling
scheme, we must use a one-sided, causal time average based only on the past
values of the nodal temperature field.

To accomplish this, we define a time filtering operation as:

〈f(t)〉 ≡
∫ t

−∞
f(t′)G(t− t′)dt′ (32)

where G(t) is a kernel function of the form

G(t) =
1

τ
e−t/τ (33)

and τ is the time scale of our filtering operation. The filter defined in (32) has
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at least three useful properties. First, it commutes with time differentiation:

d

dt
〈f〉 =

〈
df

dt

〉
(34)

Second, the time derivative of a filtered function can be rewritten as a simple,
first order ODE:

d

dt
〈f〉 =

f − 〈f〉
τ

(35)

so that 〈f〉 can be obtained by evolving this ODE in time, rather than explic-
itly calculating the integral in (32). Third, the filter is invertible:

〈f(t)〉 = g(t) ⇒ f(t) = g(t) + τ
dg

dt
(t) (36)

The first of these three properties is true for any kernel function G(t) that goes
to zero as t goes to infinity, but the second and third properties are dependent
on our particular choice of G(t).

In order to smooth the fluctuations in the nodal temperature field, we can
apply the time filtering operation directly to the atomic temperatures in Eqn
(11), giving:∫

Ω
δT hT hdV =

〈∑
α∈A

δT h(Xα)Tα∆Vα

〉
+
∫
Ωfem

δT hT hdV (37)

The reduction operation that gives the nodal temperature field in terms of the
temperature at the atoms (13) becomes

θI =
〈∑

α∈A
N̂IαTα

〉
(38)

The total energy to be conserved (cf. 17) is, in this case,

Etot = 〈Emd〉+ Efem (39)

Following the same procedure as in Sections 3.2 and 3.3, while applying the
filter inversion from (36), gives a slightly different expression for the nodal
drag force coefficients (cf. 24):

∑
J∈M

(∑
α∈A

NIαTαNJα

)
λJ =

2

3kB

∫
Γmd

NInmd · κ(∇T h + τ∇Ṫ h)dA (40)

The atomic momentum equations (14), (15), and (16) are otherwise unchanged.

Finally, the finite element temperature evolution equation with time filtering
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becomes∑
J∈N

(∫
Ω

NINJdV
)
θ̇J

=

〈
2

3kB

∑
α∈A

NIαvα ·
(
fmd
α +

1

2
fλ
α

)
∆Vα

〉
+
∑
J∈N

∑
α∈A

(
∇NI ·

κ

ρcp

∇NJ

)∣∣∣∣∣
α

θJ∆Vα

−
∑
J∈N

(∫
Ω

∇NI ·
κ

ρcp

∇NJdV
)
θJ −

∫
Γq

NI
q̄n

ρcp

dA (41)

The filtered quantity on the right-hand side is computed at nodes using the
ODE in Eqn. (35); this will be more fully described in Section 6.3. Note that
in taking the time derivative of Eqn. (38) in order to derive this equation (41),
we have used the fact that commutation of filtering and differentiation (34)
allows us to move the time derivative inside the filter.

6 Numerical Implementation Details

6.1 Computation of interatomic forces

The force fmd
α on each atom is computed in the standard way for a molecu-

lar dynamics simulation, i.e. from the derivative of an interatomic potential
function with respect to xα. In general, this potential depends on interaction
between atoms within some specified cutoff radius rc of each other. One issue
that requires special treatment in our coupled method is the handling of atoms
within a distance rc of the boundary Γmd. These atoms do not have the full
complement of neighbors that they would have in a bulk solid, and so, if not
treated carefully, these atoms will behave as if they are near a free surface
rather than in the interior of the domain.

Our approach to handling these atoms is to store the positions of a number
of “ghost atoms” located near the boundary Γmd. In this commonly employed
treatment, all atoms in the lattice that are within a distance rc outside the
boundary are stored as ghost atoms (see Figure 2). These atoms are considered
to be part of the continuum region and thus have zero displacement, but their
positions are used to compute the forces in atoms lying on the interior of Ωmd.

6.2 Surface integrals on the MD interface

Akin to the issue of evaluating the domain integral over Ωfem in Eqn. (30) , the
integral over surface Γmd on the right-hand side of Eqn. (24) may be difficult
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to compute especially if the surface does not coincide with finite element faces.
We have found that an effective approach is to approximate this integral using
a combination of the divergence theorem together with projection of derivative
fields onto nodal variables. First, note that the integral in question can be
rewritten in terms of volume integrals over Ωmd:∫

Γmd

NInmd · κ∇T hdA =
∫
Ωmd

NI∇ · κ∇T hdV +
∫
Ωmd

∇NI · κ∇T hdV (42)

Volume integrals over Ωmd can be computed through a sum over atoms, as
in Eqn. (5). The difficulty is that the second derivative of T h, in the first
integral on the right-hand side, is infinite on element boundaries when finite
element shape functions with standard C0 continuity are used. However, this
integral cannot be neglected, nor simply evaluated on element interiors, since
the integral over the element boundaries makes a finite contribution to the
total value of the expression. The approach we have taken is to approximate
this integral by projecting the second derivative of the temperature onto a
field L(X) that is defined by a nodal interpolation:

L(X) =
∑
I∈N

NI(X)LI ≈ ∇ · κ∇T h (43)

This leads to an approximation for the values LI :

LI = ∆V −1
I

∫
Ω

NI∇ · κ∇T hdV

= −∆V −1
I

∫
Ω

∇NI · κ∇T hdV −∆V −1
I

∫
Γ
NI q̄ndA (44)

where ∆VI =
∫
Ω NIdV is a measure of the volume associated with node I. In

the second line of (44), the boundary integral on Γ is zero as long as node I
does not lie on Γ.

With this approximation, the expression for the boundary integral becomes:∫
Γmd

NInmd · κ∇T hdA =
∑
J∈N

[∫
Ωmd

NINJdV
]
LJ

+
∑
J∈N

[∫
Ωmd

∇NI · κ∇NJdV
]
θJ (45)

Both integrals over Ωmd are evaluated by summing over the atoms as in (5).
The terms in brackets are constant in time and can be computed at the be-
ginning of the simulation. This approximation for the boundary integral term
in Eqn. (24) can be evaluated in the same way whether the MD/FE boundary
coincides with element faces or cuts through element interiors; there is no need
to store any discretized representation of the surface.
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6.3 Time Integration

In order to simplify the description of our time integration scheme, we can
rewrite the differential equations (14) and (41) in a more compact form:

ẋα = vα (46a)

v̇α =
1

mα

fmd
α (xβ)− 1

2
vαλα(xβ,vβ, θ̇K , θ̈K) (46b)∑

J

MIJ θ̇J = FI(xβ,vβ, θK) (46c)

where β ∈ A and K ∈ N , MIJ is the matrix with elements defined by the
integral on the left-hand side of (41), FI(xβ,vβ, θK) is the right-hand side of
(41), and

λα ≡
∑

I∈M
N̂IαλI (47)

Here, the nodal values λI are given by the solution to (40). In (46) we have
emphasized the dependence of fmd

α , λα, and FI on the atomic and nodal vari-
ables.

For compactness we will drop subscripts α and I in the following; subscripts
will instead represent the timestep as we integrate from step n to step n +
1. The integration scheme we use is an explicit predictor-corrector method
that is second-order accurate in the displacements. The scheme is based on
a modified version of the velocity-Verlet algorithm for x and v [27], and the
Gear predictor-corrector method for θ [28]. First, update the atomic velocities
to the half time step n + 1

2
:

ṽn+1/2 = vn exp
(
−1

4
∆tλ(xn,vn, θ̇n, θ̈n)

)
(48a)

vn+1/2 = ṽn+1/2 +
1

2m
∆t fmd(xn) (48b)

The exponential term in (48a) results from an operator split on (46b), and
approximating λ as a constant for a half timestep. The positions can then be
updated over the entire time step:

xn+1 = xn + ∆tvn+1/2 (49)

The predictor step for the nodal temperature field θI uses a Taylor expansion
about the current state. We find that to retain accuracy when time filtering
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is used, we need to store derivatives up to the third derivative
...
θ :

θ̃n+1 = θn + ∆tθ̇n +
1

2
∆t2θ̈n +

1

6
∆t3

...
θ n (50a)

˙̃θn+1 = θ̇n + ∆tθ̈n +
1

2
∆t2

...
θ n (50b)

¨̃θn+1 = θ̈n + ∆t
...
θ n (50c)

...
θ̃ n+1 =

...
θ n (50d)

The velocity corrector updates v to step n + 1, again using a split operator:

ṽn+1 = vn+1/2 +
1

2m
∆tfmd(xn+1) (51a)

vn+1 = ṽn+1 exp
(
−1

4
∆tλ(xn+1, ṽn+1,

˙̃θn,
¨̃θn)
)

(51b)

Finally, temperature is updated to n + 1 by computing the correct value of θ̇
from Eqn. (46c):

R ≡ ∆t
(
M−1F (xn+1,vn+1, θ̃n+1)− ˙̃θn+1

)
(52a)

θn+1 = θ̃n+1 +
3

8
R (52b)

θ̇n+1 = ˙̃θn+1 +
1

∆t
R (52c)

θ̈n+1 = ¨̃θn+1 +
3

2∆t2
R (52d)

...
θ n+1 =

...
θ̃ n+1 +

1

∆t3
R (52e)

Coefficients on the right-hand side of Eqn (52) are obtained from Gear [28].

When time filtering is used, filtered values such as the first term on the right-
hand side of (41) must be computed. This is done by using the ODE given
in (35) to update at every time step. For this we use a simple second-order
Crank-Nicholson method; the update of the filtered value of a general function
f is the solution to

1

∆t

[
〈f〉n+1 − 〈f〉n

]
=

1

2τ

[
(fn+1 − 〈f〉n+1) + (fn − 〈f〉n)

]
(53)

This is easily solved for 〈f〉n+1. The actual choice of time filter scale τ depends
on the size of the mesh elements (i.e. the number of atoms contributing to each
nodal temperature) and the acceptable fluctuation sizes; effects of various
choices for τ for different meshes on fluctuations are explored in the example
in Section 7.1.
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Algorithm 1 Time integration algorithm for N total timesteps

1: initialize temperature θ0 and its time derivatives at all nodes, and initialize
position x0 and velocity v0 at all atoms (see Section 6.4)

2: initialize interatomic forces fmd(x0), (Eqn. 3b)
3: for n = 0 to N − 1 do
4: predictor
5: solve for thermostat variable λ = λ(vn, θn, θ̇n), (Eqn. 40)

6: update ṽn+1/2 = vn exp
(
−1

4
∆tλ

)
, (Eqn. 48a)

7: Verlet update vn+1/2 = ṽn+1/2 + 1
2m

∆t fmd(xn), (Eqn. 48b)
8: Verlet update xn+1 = xn + ∆tvn+1/2, (Eqn. 49)

9: predict temperature θ̃n+1,
˙̃θn+1, . . . via Gear formula (Eqn. 50)

10: end predictor
11: corrector
12: compute new interatomic forces fmd(xn+1), (Eqn. 3b)
13: set forces on all fixed ghost atoms to zero
14: Verlet update ṽn+1 = vn+1/2 + 1

2m
∆t fmd(xn+1), (Eqn. 51a)

15: solve for new thermostat variable λ = λ(ṽn+1, θ̃n+1,
˙̃θn)), (Eqn. 40)

16: update vn+1 = ṽn+1 exp
(
−1

4
∆tλ

)
, (Eqn. 51b)

17: compute coupling term in angle brackets in Eqn. (41), and its time-
filtered value (Eqn. 53)

18: compute θ̇n+1 from energy balance (Eqn. 41)

19: correct temperature θn+1,
¨̃θn+1, . . . via Gear formula (Eqn. 52)

20: end corrector
21: set n → n + 1
22: end for

A step-by-step summary of the time integration procedure is given in Algo-
rithm 1. Note that in our approach to the time integration, we use the same
time step size for both the continuum and MD solutions, although in principal
subcycling could be used to take advantange of the fact that the characteris-
tic time scale of the continuum region is longer. In practice, we find that the
computational time for the continuum solution is fast compared with the MD
update, so there is not a significant advantage to be gained by subcycling, at
least for the problem sizes we have run.

6.4 Initial Conditions and the Rescaling Thermostat

In most simulations we require that the initial temperature field at time t = 0
in the entire domain be set to some known function. Usually this is a constant
value on the domain, although in some cases we desire a spatially varying
temperature field. For the finite element temperature field this is simply a
matter of setting the nodal values θI equal to the desired values at t = 0, but
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in the MD region we must ensure that the atomic temperatures are consistent
with these values, i.e. by Eqn. (13) we require:∑

α∈A
N̂IαTα = θ̄I (54)

where θ̄I are the desired nodal temperatures.

The state of the system at t = 0 must satisfy (54) while still reflecting a
reasonable distribution of particle velocities and positions; for example, the
total energy should be partitioned approximately equally between potential
and kinetic energies. For this reason, we cannot simply assign velocities to the
atoms at t = 0, but must allow the simulation to achieve a near-equilibrium
distribution while enforcing (54), at least on average. One way to achieve this
is to evolve the free system dynamics while repeatedly rescaling the atomic
velocities by some multiplicative factor ξ(x), which we must compute. Since
we want to satisfy the constraint at each node, it seems reasonable to expect
that ξ(x) will belong to a function space with a number of degrees of freedom
equal to the number of nodes (so that the number of equations will equal the
number of unknowns). We will assume therefore that, like θ, ξ is a “coarse”
scale variable defined by a set of nodal values ξI . We can then obtain ξ at any
atom α using our finite element shape functions:

ξα =
∑
I

NIαξI . (55)

The rescaled velocity at atom α can then be written:

ṽα = ξ1/2
α vα. (56)

We use the square root of ξα to scale the velocity so that when we compute
the temperature, which is proportional to v2

α, the scaling will be linear. After
rescaling, the atom velocities satisfy the equation:∑

I

N̂IαT̃α = θ̄I (57)

where

T̃α =
1

3kB

mα |ṽα|2

= ξαTα (58)

Substituting for the interpolated values of ξα gives a simple matrix equation
for the nodal values ξI :

Mξξ = θ̄ (59)

where
M ξ

IJ =
∑
α

N̂IαTαNJα (60)
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Given a set of atomic velocities and an initial temperature field θ̄I at time t =
0, we can solve for ξI , interpolate to the atoms, and rescale the velocities. The
resulting atomic temperature field reduced to the nodes will match the given
field. In practice, we find that the best initial condition is obtained by allowing
the MD system to run freely for a few picoseconds, while periodically applying
the rescaling thermostat derived above. This allows time for the system to
achieve equipartition of energy between kinetic and potential energies; this
equipartition can be imperfect if the rescaling thermostat is applied to a system
that is far from the desired temperature or far from equilibrium.

7 Examples

We performed a set of representative problems to investigate and illustrate
the performance of the proposed coupling algorithm. All simulations used the
Lennard-Jones pair potential

φ(r) = 4ε
((σ

r

)12
−
(σ

r

)6)
(61)

for the interatomic interactions with parameters ε/kB = 119.8 K and σ =
3.405 Å for solid argon, taken from [29]. Non-periodic atomic boundaries were
padded with two unit cells (four layers) of ghost atoms. An atomic mass of
mα = 39.948 amu was used and the equilibrium, face-centered cubic lat-
tice constant ` = 5.406 Å ≈ 1.775σ at 30 K ≈ 0.25ε/kB was calculated
using a finite-temperature, zero pressure simulation. The continuum ther-
mal diffusivity κ

ρcp
= 50 Å2/ps was calculated using a thermal conductiv-

ity value κ = 0.5 W/(mK) estimated from [29] and a heat capacity value
ρcp = 1.1 MJ/(Km3) from Eqn. (27). Standard 8-node tri-linear hexahedral
elements were employed in the finite element representation of the material.

To initialize the states of the atoms in all of the following simulations, we used
the thermostat described in Section 6.4 in a thermalization procedure consist-
ing of rescaling every 100 steps for several thousand time steps. We found
that a time step of 0.005 ps ≈ 172.5 tE, was sufficiently accurate and stable

to produce the following results. Here, tE ≈ 0.4
√

mασ2/ε is the approximate
Einstein vibrational period for the lattice.

7.1 One Dimensional Heat Conduction

In this example, a transient, non-equilibrium heat flux simulation was effected
using temperature boundary conditions on the ends of a FE grid which sub-
sumed the MD region. The atomic system was (20×8×8)` in size and centered
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in the overlapping finite element domain of size (48×8×8)`. The domain was
discretized using cubical elements; simulations were run with element sizes of
h = {8, 4, 2}`, resulting in meshes with 6, 48, and 384 elements, respectively.
The [100] crystal directions were aligned with the axes of the computational
domain. The problem geometry for the h = 4` case is shown in Figure 3.

Periodic boundaries were imposed on the lateral (±y and ±z) faces of the rect-
angular domain. The temperature of the entire system was initially brought
to 30 K via rescaling and, immediately following the thermalization stage,
the end temperatures were changed to 40 K and 20 K for the left (−x) and
right (+x) ends, respectively. The longitudinal temperature traces, Figure 4,
of this essentially one-dimensional problem show good agreement with the cor-
responding solution of the classical heat conduction equation. For moderately
sized MD simulations, including this simple test problem, we do not expect
discernible effects of the finite speed of propagation of heat waves and, con-
sequently, the Fourier model in the FE-only regions appears to be sufficiently
representative. The work of Volz et al. [30] and Ho et al. [31] illustrate, for
nearly 1D and strictly 2D systems respectively, the potential discrepancies be-
tween Fourier behavior and MD simulations, albeit at much higher pressures
and temperatures than those investigated here. Using the estimate 1/

√
3c1

employed in both [30] and [31] for the speed of the “second sound” wave,
where c1 is the speed of the first (transverse) wave, we calculate a thermal
wave speed of c2 ≈ 700 m/s. At this velocity a thermal pulse will transit a
typical finite element (h = 4`) in about 3.2 ps. Since this transit time is on the
order of the filter scale we employ, it is reasonable that our simulations show
results that are consistent with a (nearly) infinite speed of heat propagation.

Specifically, we ran simulations using various values of the time filter parameter
τ = {0.05, 0.2, 1.0, 5.0, 10.0, 25.0} ps. As a demonstration of the effect of time
filtering on temperature fluctuations, Figure 5 shows the root mean square
(RMS) fluctuation in time at the center point of the system as a function of
τ for each mesh size h. For large values of τ , the RMS values are proportional
to τ−1/2; this is the expected behavior if the number of phonons being aver-
aged over is proportional to the filter time, since the RMS of N samples is
expected to be inversely proportional to the square root of N . Likewise, the
dependence on the mesh size approximately follows the trend h−3/2, consistent
with averaging over a number of phonons proportional to the element volume.
Note that data was only sampled in the range t ∈ [500, 1000] ps, where the
temperatures have reached a statistical steady-state.
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7.2 Diffusion of an Initial Gaussian Temperature Profile

In order to show consistency between a full MD solution and a coupled simu-
lation, we compared two simulations: (a) a “reference” simulation where the
computational region (32 × 32 × 8)` was completely filled with atoms and
the FE grid was only used for data-processing; and (b) a coupled simulation
where the MD region (16×16×8)` only partly filled the computational domain
(Figure 6). In both these simulations an initial (two dimensional) temperature
profile, T (x, y, z) = (20.0 K) exp(−

√
x2 + y2/(50.0Å))+(20.0 K), was imposed

via the rescaling thermostat and let diffuse with adiabatic conditions on the
lateral boundaries and periodic conditions on the top and bottom. In the case
of the coupled simulation, we merely left the natural, zero flux boundary con-
ditions in place; for the reference simulation, we imposed zero displacement
boundary conditions so that no work would be done on the system and it
would behave adiabatically as an NVE ensemble. Also, we used a time fil-
ter scale τ = 10.0 ps in both simulations, which, in the case of the reference
simulation, was merely used to reduce the atomic data to comparable nodal
temperatures.

It is clear from the sequence of temperature contours shown in Figure 7 that
the coupled simulation is quite comparable to the more computationally ex-
pensive full MD reference simulation. Figure 8 shows the normalized coarse
scale energy

∑
I θI(t)/

∑
I θI(0) for the two systems. Note that this quantity is

different from the total energy expressed in Eqn. (17), since (17) uses kinetic
and potential energies of the atoms in the MD region and is exactly conserved
by design. Instead, the quantity plotted in Figure 8 uses the nodal tempera-
ture values everywhere in the domain; this is related to the only the kinetic
energy for the atoms, and thus is not exactly conserved. In both systems, this
quantity changes slightly early in the simulation; this can be attributed to the
fact that the system is initially not in equilibrium and does not have an equi-
librium equipartition between potential and kinetic energy. In both systems
the integrated energy eventually fluctuates around a constant value; fluctua-
tions are larger in the reference system because it contains many more atoms
(131,072 vs. 32,768). The fact that our coupled system reaches a constant en-
ergy demonstrates that the method for this problem is stable, and that energy
neither grows nor is dissipated by our numerical treatment.

7.3 Thermal Transport Across an Acoustic Mismatch

This example uses the same material system as in the previous examples
except atoms in a two lattice unit wide region in the middle of the a com-
putational domain (40 × 12 × 12)` were given atomic masses ten times their
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nominal value 10mα to create an ersatz grain boundary (Figure 9). As in
the one-dimensional conduction simulation in Section 7.1 , lateral boundaries
were prescribed to be periodic and temperatures were specified on the ends.
In this case, the MD system was initially thermalized to 30 K and the nodes
on the left end of the computational domain were given a constant temper-
ature of 50 K and those on the right end a constant temperature of 10 K. A
parameter study was done to show how the MD system size (2a × 12 × 12)`
affects the calculated temperature profile. As can be seen in Figure 10, the
MD/FE boundary can be brought within three lattice units of the mismatch
boundary with no substantial effect on the steady-state temperature profile.
It is interesting to note that the profile is not entirely symmetric, with the low
temperature side showing greater deviations across MD system size and an
ordering of this difference with a. Despite this small effect, it is clear that the
coupled method was successful in simulating the temperature jump expected
at a grain-like boundary.

8 Discussion and Conclusions

In this work we have presented a seamless, energy-conserving method to couple
the temperature fields of atomistic and continuum representations of material.
The method allows the use of MD in a localized region of a domain, surrounded
and overlaid by a continuum finite element solution. Inside the MD region the
dynamics are governed by the detailed interatomic interactions, while every-
where else the heat transfer is governed by the Fourier heat law. A strength of
the method is that computations do not depend on the boundaries of the MD
region aligning with finite element faces, so that the shape of the MD region
can be arbitrary. This simplifies the task of generating discretized domains;
and it allows for the possibility of very simple resizing or rediscretization of
both the finite element mesh and the MD lattice, which is one component of
an adaptive simulation.

The main motivation for development of this method is to simulate problems
in which either heat is generated in a localized region (e.g. laser heating, sur-
face friction) or in which localized microstructures at the atomic scale strongly
affect the heat transfer (e.g. thermal transport across grain boundaries or near
defects). The example problem presented in Section 7.3 is an example of the
latter type of application. In both cases the method can allow solution on a
much larger domain than would be possible using MD alone, since MD can
be used only where necessary to correctly capture the relevant phenomena.
However, the method is also useful in smaller problems as a convenient way
of applying temperature boundary conditions to non-equilibrium MD simula-
tions. For example, in the example problems presented in both Sections 7.1
and 7.3 the method was used to fix the temperature on the ends of the domain;

23



this is an attractive alternative to other approaches that may be used, such
as applying MD thermostats to regions near the boundaries which typically
creates artificial Kapitza-like temperature jumps.

It should be pointed out that although we have assumed a Fourier heat law ap-
plies in the continuum region, this assumption is not required for the method
presented. It is straightforward to replace Eqn. (1) with a different form, for
example, the Maxwell-Cattaneo-Vernotte model typically employed to repre-
sent the finite speed of propagation of heat waves, see, e.g., [32,30,31]. On the
other hand, the method does not provide an a priori way of determining what
the correct form of the heat law should be in the continuum, nor does it allow
for the analytical derivation of coefficients in a heat law. Physical or numerical
experiments, or theory, must be used to provide a relation between heat flux
and temperature.

A clear direction for the extension of this work is to combine the thermal
coupling derived here with coupling of the momentum equations, as has been
done previously using related methods, to capture the full thermo-mechanical
behavior of a material. In some of this earlier work ([8], [33]) an effort has been
made to eliminate internal wave reflections in the MD region caused by the
discrepancy in discretization scales at the boundary. We have not concerned
ourselves with this phenomenon in the current work, mainly because at finite
temperatures the large number of interacting phonons de-emphasizes the im-
portance of individual waves reflected at the boundary; reflected waves are
indistinguishable from the surrounding phonons. This is in contrast to earlier
work at low temperatures, for which an outgoing phonon should be removed
from the domain but is not addressed by the new method presented here. How-
ever, our method does allow small-scale waves in the MD region to be tracked
as thermal information as they approach the boundary, since they contribute
to the nodal temperature field. Through this continuum field the small-scale
energy is transported out into the continuum; this thermal information is lost
if waves are removed through specialized boundary conditions as the approach
the interface. Future work will focus on merging the best features of existing
approaches to coupling the atomistic and continuum momentum equations
with this new method for coupling the temperature fields. By combining the
strengths of MD and continuum simulation methods in this way, a powerful
tool can be developed for the simulation of a range of important multi-scale
engineering problems.
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Fig. 3. One dimensional heat conduction: mesh and atomic positions for h = 4`
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Fig. 6. Mesh and atomic positions for the coupled simulation of the diffusion of an
initial Gaussian temperature profile
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Fig. 9. Mesh and atomic positions for a = 8 showing regions of different atomic mass
(blue: atoms with normal mass, green: heavy atoms in the center of simulation)
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